

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2025 - الموضوع -

المملكة المفرية وزارة التربية الوصنية (033ماه ١٩٥٧٥٤١ ١٥٥١٥٥٠ ١ ع ١٠٥٥ ١ المملكة الموصنية والتعليم الأولى والرياضة (1904عاء ١٩٥٥ ١ ١٥٥ ١ ع ١١١١٥١٥٠ ١ مركز الوطني للامتحانات المدرسية وتقييم التعلمات

IIIIIIIIIIIIIIII NS - 30F

4h	مدة الإنجاز	الفيزياء والكيمياء	المادة
7	المعامل	شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)	الشعبة المسلك

- L'usage de la calculatrice scientifique **non programmable** est autorisé.
- La formule littérale doit être donnée avant l'application numérique et le résultat accompagné de son unité.
- Les exercices peuvent être traités séparément selon le choix du candidat.

Le sujet comporte cinq exercices : un exercice de chimie et quatre exercices de physique.

Exercice 1 : Chimie (7 points)

Partie 1 : Electrolyse d'une solution de chlorure d'or ;

Partie 2 : Etude d'une solution aqueuse d'éthanoate de sodium.

Exercice 2 : Ondes mécaniques (2 points)

- L'écoulement silencieux de l'eau dans une conduite cylindrique.

Exercice 3 : Transformations nucléaires (1,5 points)

- La désintégration du radium 226.

Exercice 4 : Electricité (4,25points)

Partie 1 : Détermination de la capacité d'un condensateur et de l'inductance d'une bobine ;

Partie 2 : Oscillations forcées dans un circuit RLC série.

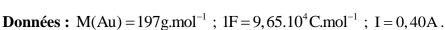
Exercice 5 : Mécanique (5,25 points)

- Le saut à l'élastique.

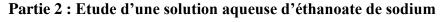
Exercice 1: Chimie (7 points)

Les parties 1 et 2 sont indépendantes

Partie 1 : Electrolyse d'une solution de chlorure d'or


L'or est un métal noble, son symbole chimique est Au, son état ionique dépend du composé ionique où il se

trouve, sa charge peut aller de -e (Au⁻) jusqu'à +4e (Au⁴⁺) .


Le but de cette partie est de déterminer la charge de cet ion dans le chlorure d'or dont la solution aqueuse sera notée $Au^{p+}_{(aq)}+pCl^-_{(aq)}$ avec p un entier naturel non nul.

On réalise l'électrolyse d'une solution aqueuse de chlorure d'or, en utilisant deux électrodes E_1 et E_2 inattaquables (figure 1), pour cela on fait passer dans l'électrolyseur un courant électrique continu d'intensité I.

La courbe de la figure 2 représente l'évolution de la masse de l'or déposé en fonction du temps.

- 1- Choisir la proposition juste parmi les propositions suivantes : (0,5pt)
- a- L'électrolyse est une transformation chimique spontanée.
- **b-** Lors de l'électrolyse, le courant électrique circule à l'extérieur de l'électrolyseur de l'anode vers la cathode.
- **c-** Lors de l'électrolyse, le courant électrique entre dans l'électrolyseur par E₁ donc l'or se dépose sur E₂.
- **d-** Lors de l'électrolyse, le quotient de la réaction Q_r tend vers la constante d'équilibre $K=Q_{r,\acute{e}}$.
- **2-** Ecrire l'équation de la réaction qui se produit au niveau de la cathode. **(0,5pt)**
- 3- Trouver l'expression de la masse de l'or déposé en fonction de M(Au), F, I, p et t. (0,5pt)
- **4-** Déterminer la valeur de p et déduire le symbole de l'ion de l'or dans le composé étudié. (0,75pt)

L'éthanoate de sodium CH₃COONa est un composé ionique utilisé dans l'industrie alimentaire, pharmaceutique et la chimie analytique...

Cette partie se propose d'étudier quelques solutions aqueuses de ce composé et sa pureté dans un produit commercial.

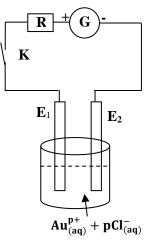


Figure 1

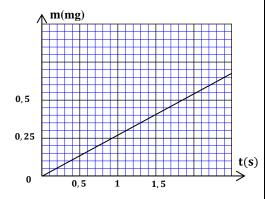


Figure 2

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2025 – الموضوع - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Données:

Www.AdrarPhysic.Fr

- Toutes les mesures sont faites à 25°C;
- Le produit ionique de l'eau : $K_e = 10^{-14}$;
- La masse molaire de l'éthanoate de sodium : M(CH₃COONa) = 82g.mol⁻¹;
- Les conductivités molaires ioniques : $\lambda_{Na^+} = 5mS.m^2.mol^{-1} \ ; \ \lambda_{CH_3COO^-} = 4,1mS.m^2.mol^{-1} \ ;$ $\lambda_{HO^-} = 19,9mS.m^2.mol^{-1} \ .$
- 1- On prépare une solution aqueuse S d'éthanoate de sodium $Na_{(aq)}^+ + CH_3COO_{(aq)}^-$ de volume V = 100 mL et de concentration molaire C = 0, $1 mol.L^{-1}$, la mesure de la conductivité de S donne : $\sigma = 910$, $125 mS.m^{-1}$. On modélise la transformation acide -base qui se produit par l'équation :

$$CH_{3}COO_{(aq)}^{-} + H_{2}O_{(\ell)} \iff CH_{3}COOH_{(aq)} + HO_{(aq)}^{-}$$

1-1- Montrer que le taux d'avancement final de la réaction s'écrit : $\tau = \frac{\sigma - 0.91}{1.58}$, avec σ exprimée en S.m⁻¹.

Calculer sa valeur. (0,75pt)

1-2- Montrer que la constante pK_A du couple CH₃COOH/CH₃COO⁻ s'écrit sous la forme :

$$pK_A = log(\frac{C.\tau^2}{K_e(1-\tau)})$$
. Calculer sa valeur. (0,75pt)

- **2-** On prépare une solution aqueuse S_1 de volume $V_1 = 20$ mL en dissolvant une masse $m_1 = 328$ mg d'éthanoate de sodium solide dans l'eau pure.
- **2-1-** Calculer C_1 la concentration molaire de S_1 . (0,25pt)
- **2-2-** Trouver la valeur de τ_1 le taux d'avancement final de la réaction dans S_1 , sachant que la réaction entre les ions éthanoate et l'eau est très limitée $(\tau_1 \ll 1)$. (0,5pt)
- 2-3- Comparer τ_1 et τ le taux d'avancement final de la réaction dans S . Déduire. (0,75pt)
- 3- Pour s'assurer de la pureté de l'éthanoate de sodium dans un sachet commercial, on prend de ce sachet une masse $m_0 = 164$ mg qu'on dissout dans l'eau pure afin d'obtenir une solution S_0 de volume $V_0 = 20$ mL et de concentration molaire C_0 .

On ajoute à S_0 un volume $V_A = 30 \text{mL}$ d'une solution aqueuse d'acide chlorhydrique $H_3O_{(aq)}^+ + Cl_{(aq)}^-$ de concentration molaire $C_A = 0.1 \text{mol.L}^{-1}$, on obtient ainsi une solution S'.

- 3-1- Ecrire l'équation de la réaction qui se produit dans S' sachant qu'elle est totale. (0,25pt)
- **3-2-** On dose les ions oxoniums H_3O^+ restant dans la solution S' avec une solution aqueuse d'hydroxyde de sodium $Na_{(aq)}^+ + HO_{(aq)}^-$ de concentration molaire $C_B = 0,1 \, \text{mol.L}^{-1}$. L'équivalence est obtenue lorsqu'on verse un volume $V_{BE} = 12 \, \text{mL}$.

L'équation qui modélise la réaction du dosage s'écrit : $H_3O_{(aq)}^+ + HO_{(aq)}^- \longrightarrow 2H_2O_{(\ell)}$

3-2-1- Vérifier que $C_0 = \frac{C_A.V_A - C_B.V_{BE}}{V_0}$. Déduire la masse m de l'éthanoate de sodium réellement dissoute

dans S_0 . (1pt)

3-2-2- En comparant m à m_0 , déduire à propos de la pureté du contenu de sachet. (0,5pt)

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2025 – الموضوع - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Exercice 2 : L'écoulement silencieux de l'eau dans une conduite cylindrique (2points)

Les ondes ultrasonores sont des ondes mécaniques qui peuvent se propager dans les liquides avec une vitesse qui dépend de la nature du liquide et de la vitesse de son écoulement.

La vitesse silencieuse est la vitesse d'écoulement de l'eau le long d'une canalisation sans émettre un son audible, elle est donnée par la formule empirique de Croquelois : $v_s = \sqrt{0,02d}$, où la vitesse silencieuse v_s est exprimée en $m.s^{-1}$ et d'étant le diamètre de la canalisation exprimé en mm.

L'objectif de cet exercice est de déterminer le diamètre d d'une conduite qui permet d'avoir un écoulement non audible.

Une onde ultrasonore de fréquence N=50kHz se propage, avec une vitesse v, dans une eau qui coule dans une conduite avec une vitesse v_e tel que : $\vec{v}=\vec{v}_0+\vec{v}_e$, avec v_0 la vitesse de propagation des ondes ultrasonores dans l'eau au repos.

Pour déterminer la vitesse v_0 et la vitesse v_e d'écoulement de l'eau dans une conduite horizontale, on place à l'intérieur de cette conduite, un émetteur E et un récepteur R d'ondes ultrasonores.

L'émetteur E et le récepteur R, distants de L=1,0m, sont situés sur la même droite horizontale et parallèle à la direction de la conduite de l'eau.

L'émetteur E émet, à l'instant $\,t=0\,,$ une onde ultrasonore de faible durée qui est reçue par le récepteur R.

Un dispositif adéquat permet d'enregistrer le signal u(t) reçu par le récepteur R dans les deux cas suivants :

 1^{er} cas: L'eau est au repos. (figure1)

2ème cas : L'eau coule de E vers R. (figure 2)

La figure 3 représente les deux enregistrements obtenues (a) et (b) dans les deux expériences.

- **1-** L'enregistrement (a) correspond au 1^{er} cas. Sachant que $t_1 = 667 \mu s$:
- **1-1-** Calculer la valeur de v_0 . (0,25pt)
- 1-2- Déduire la longueur d'onde λ de cette onde ultrasonore. (0,25pt)
- **2-** L'enregistrement (b) correspond au 2^{ème} cas.

Soit τ = 0,280 μ s la différence entre les deux durées de propagation de l'onde ultrasonore de l'émetteur E au récepteur R dans les deux cas.

- **2-1-**Trouver l'expression de τ en fonction de $v_e, v_0, \text{et } L$. (0,5pt)
- 2-2- Déterminer v_e la vitesse de l'écoulement de l'eau dans la conduite. (0,5pt)
- 2-3- Déduire le diamètre d de la conduite pour que v_e soit une vitesse silencieuse. (0,5pt)

(a) t_1 (b) Figure 3

Conduite d'eau

Figure 1

Sens d'écoulement de l'eau

Figure 2

Exercice 3 : La désintégration du radium 226 (1,5point)

Le radium 226 a été utilisé jusqu'aux années 1950, pour ses propriétés de radio-luminescence, dans les peintures destinées à l'horlogerie et aux dispositifs de signalisation de secours...

Le but de cet exercice est de déterminer l'énergie libérée par un échantillon de radium 226.

Le radium $^{226}_{\ 88}Ra$ subit une désintégration de type $\,\alpha\,$ en se transformant en radon $^{A}_{\ Z}Rn$.

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2025 – الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Données :

Noyau	α	^A _Z Rn	²²⁶ ₈₈ Ra
masse en u	4,0015	221,9703	225,9770

- la masse molaire du radium 226: $M = 226g.mol^{-1}$;
- la constante d'Avogadro: $N_A = 6,02.10^{23} \text{mol}^{-1}$;
- $1u = 931,5 \text{MeV.c}^{-2}$; $1 \text{MeV} = 1,6.10^{-13} \text{ J}$.
- 1- Ecrire l'équation de désintégration du radium 226 en déterminant la valeur de A et celle de Z. (0,25pt)
- **2-** Une boite de peinture destinée aux dispositifs de signalisation de secours contient un échantillon de radium 226 de masse $m_0 = 1,0g$ à l'instant t = 0.
- **2-1-** Calculer N_0 le nombre de noyaux du radium 226 dans l'échantillon à t = 0. (0,25pt)
- 2-2- Montrer que le nombre de noyaux dans l'échantillon du radium 226 à un instant t s'écrit :

$$N(t) = N_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}}$$
 où $t_{1/2}$ est la demi-vie du radium 226. **(0,25pt)**

2-3- Trouver, en Joule, l'énergie libérée E par l'échantillon pendant la durée $\Delta t = t - t_0 = 3t_{1/2}$. (0,75pt)

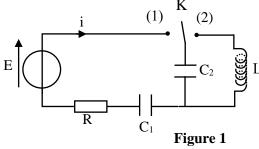
Exercice 4 : Electricité (4,25 points)

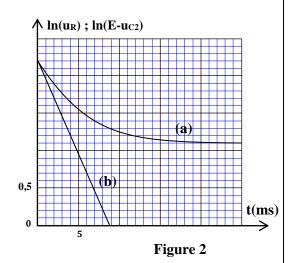
Les parties 1 et 2 sont indépendantes

Partie 1 : Détermination de la capacité d'un condensateur et de l'inductance d'une bobine.

Pour déterminer la capacité d'un condensateur et l'inductance d'une bobine, on réalise le montage expérimental de la figure 1 comportant :

- un générateur idéal de tension, de force électromotrice E;
- deux condensateurs initialement déchargés de capacités $\,C_{_1}\,$ et $\,C_{_2}=2\mu F\,;$
- une bobine d'inductance L et de résistance négligeable ;
- un conducteur ohmique de résistance R;
- un interrupteur K à double position.


1- Détermination de la capacité C_1 :


A un instant pris comme origine des dates (t = 0), on place l'interrupteur K en position 1.

Un dispositif adéquat a permis d'obtenir les courbes (a) et (b) représentant l'évolution temporelle de $\ln(u_R)$ et de $\ln(E-u_{C_2})$ avec u_R la tension aux bornes du conducteur ohmique et u_{C_2} la tension aux bornes du condensateur de capacité C_2 . (Figure 2)

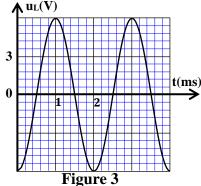
1-1- Montrer que l'équation différentielle vérifiée par la tension $u_{C_2} \text{ s'écrit : } \frac{du_{C_2}}{dt} + \frac{u_{C_2}}{R.C_e} = \frac{E}{R.C_2} \text{ , avec } C_e \text{ la capacité du}$

condensateur équivalent à l'association des deux condensateurs C_1 et C_2 . (0,5pt)

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2025 – الموضوع - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

1-2- La solution de cette équation différentielle s'écrit sous la forme : $u_{C_2}(t) = A(1-e^{-\frac{t}{\tau}})$, avec A une constante positive et τ la constante de temps.

Trouver l'expression de A et celle de τ en fonction des paramètres du circuit. (0,5pt)

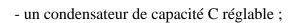

- 1-3- Déterminer l'expression de la tension $u_R(t)$ en fonction de E, τ et t. (0,5pt)
- 1-4- Déterminer parmi les courbes (a) et (b) celle qui correspond à $ln(u_R) = f(t)$. (0,25pt)
- 1-5- Déterminer, en exploitant les courbes de la figure 2, la valeur de E, de τ et celle de C_1 . (0,75pt)

2- Détermination de l'inductance L de la bobine

Quand le régime permanent est atteint, on bascule l'interrupteur K en position (2) à un instant pris comme nouvelle origine des dates (t = 0).

La courbe de la figure 3 représente la variation au cours du temps de la tension u_L aux bornes de la bobine.

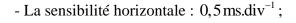
- 2-1- Etablir l'équation différentielle vérifiée par la tension u_L. (0,5pt)
- **2-2-** Calculer la valeur de L (on prend $\pi^2 = 10$). (0,25pt)
- **2-3-** Déterminer l'énergie électrique emmagasinée dans le condensateur C_2 à l'instant t = 1,5 ms. (0,25pt)



R Y_1

Partie 2 : Oscillations forcées dans un circuit RLC série

On considère le circuit de la figure 4 comportant :


- un générateur de basse fréquences (GBF) qui délivre une tension sinusoïdale $u(t)=U_{m}\cos(2\pi N.t+\phi)$, N étant la fréquence du GBF ;

- un conducteur ohmique de résistance $\,R=20\,\Omega\,;\,$
- une bobine (b) d'inductance L = 0, 2H et de résistance r.

Un courant électrique d'intensité $i(t) = I_m \cos(2\pi N.t)$ circule dans le circuit.

On visualise sur les entrées Y_1 et Y_2 de l'oscilloscope, les tensions u(t) et $u_R(t)$, avec $u_R(t)$ la tension aux bornes du conducteur ohmique.

- La sensibilité verticale est la même pour les deux entrées.

Pour une valeur C de la capacité du condensateur on obtient l'oscillogramme de la figure 5.

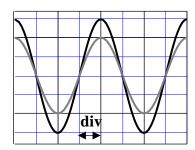
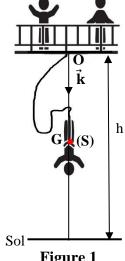


Figure 4

Figure 5

- 1- Montrer que le circuit est en état de résonance électrique. (0,25pt)
- 2- Calculer la valeur de C et celle de r. (0,5pt)

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: الفيزياء والكيمياء-شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)



Exercice 5 : Mécanique (5,25 points)

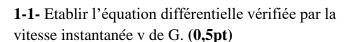
Le saut à l'élastique

Le saut à l'élastique depuis les ponts et les tours est une activité sportive extrême encadré par des professionnels. Le mouvement d'un sportif, lors d'un saut élastique, se déroule en deux phases, la première phase est une chute verticale dans l'air, la deuxième phase consiste à freiner le mouvement du sportif, à l'aide d'une corde élastique de longueur à vide ℓ_0 , pour ne pas heurter le sol. (Figure 1)

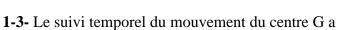
Cet exercice se propose d'étudier le mouvement d'un sportif, qu'on modélise par un solide (S) homogène, de centre d'inertie G, qui effectue un saut à l'élastique d'une hauteur h = 102m du sol.

Figure 1

Données


- La masse de (S): m = 70 kg;
- La longueur de (S): L = 1,70m;
- L'intensité de la pesanteur : $g = 9.8 \text{ m.s}^{-2}$.

1- Chute verticale du sportif


Au cours de cette première phase de chute, le solide (S) est soumis à son poids \vec{P} et à la force des frottements fluides \vec{f} d'intensité $f = \lambda v^n$ où λ est une constante positive, v est la vitesse instantanée du centre d'inertie G et n un nombre sans unité.

On néglige la poussée d'Archimède et l'action de la corde devant les autres forces.

On étudie le mouvement du centre G dans un repère R(O; k) lié à un référentiel terrestre considéré comme galiléen.

1-2- Déduire que :
$$n.\ln(v) = \ln(\frac{m}{\lambda}) + \ln(g - \frac{dv}{dt})$$
 .(0,5pt)

permis de tracer les variations de $\frac{dv}{dt}$ en fonction de v. (Figure2)

En exploitant la courbe de la figure 2 :

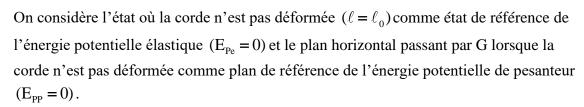
- 1-3-1- Déterminer la valeur v_{ℓ} de la vitesse limite. (0,25pt)
- **1-3-2-** Montrer que n = 2. (0,5pt)
- 1-3-3- Trouver la valeur de la constante λ . (0,25pt)
- 1-4- La résolution de l'équation différentielle établie dans la question 1 est obtenue par la méthode d'Euler. Un extrait de la feuille de calcul est représenté dans le tableau ci-dessous.

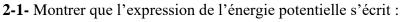
t(s)	$t_0 = 0$	$t_1 = 0,20$	$t_2 = 0,40$	$t_3 = 0,60$
v(m.s ⁻¹)	0	1,96	V_2	V_3
a(m.s ⁻²)	9,8	9,77	9,67	a_3

Déterminer la valeur de la vitesse v_2 et celle de l'accélération a_3 . (0,5pt)

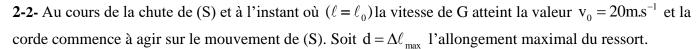
الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2025 – الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (خيار فرنسية)

Figure 3


2- Etude théorique de la phase de freinage


Le but de cette étude est la détermination de la constante de raideur de la corde élastique qui assure un saut élastique sans que le sportif touche le sol. Pour cela, on assimile l'action de la corde à celle d'un ressort de longueur à vide $\ell_0 = 60 \text{m}$, de masse négligeable et de constante de raideur K. (figure 3)

On étudie le cas extrême où les forces de frottement fluide sont négligeables.


On étudie le mouvement du centre d'inertie G de (S) dans un repère $R'(O';\vec{k})$ lié à un référentiel terrestre considéré comme galiléen.

On repère la position de G à un instant t par sa cote z dans le repère $R'(O'; \vec{k})$, tel que la cote de G est $z = \frac{L}{2}$ lorsque $\ell = \ell_0$.

$$E_P = \frac{1}{2}K(z - \frac{L}{2})^2 - \text{m.g}(z - \frac{L}{2}) \cdot (\textbf{0.5pt})$$

2-2-1- En exploitant la conservation de l'énergie mécanique, vérifier que : $m.v_0^2 = K.d^2 - 2m.g.d$. (0,5pt)

2-2-2- Déduire que l'expression de d s'écrit :
$$d = \frac{m.g}{K} + \sqrt{\frac{m^2.g^2}{K^2} + \frac{m.v_0^2}{K}}$$
 . **(0,75pt)**

2-2-3- Montrer que, pour une corde de constante de raideur $K = 50 \text{N.m}^{-1}$, le sportif atteint le sol lors de sa chute. **(0,5pt)**

2-3- Déterminer la valeur minimale de la raideur K qui permet un saut sécurisé. (0,5pt)

https://ph-chmzrh.e-monsite.com/