الامتحان الوطني الموحد للبكالوريا المسالك الدولية – الدورة العادية 2025 – الموضوع –

المملكة المغربية وزارة التربية المولمنية وتقييم المتعلمات المحالات المحالات المحالات المحالات المحالات المدرسية وتقييم التعلمات

	LLLLLLLLLLLLLLLL-LLLLL	NS28F
--	------------------------	-------

3h	مدة الإنجاز	الفيزياء والكيمياء	المادة
7	المعامل	شعبة العلوم التجريبية مسلك العلوم الفيزيائية (خيار فرنسية)	الشعبة والمسلك

- L'usage de la calculatrice scientifique non programmable est autorisé.
- On donnera les expressions littérales avant de passer aux applications numériques.
- Les exercices peuvent être traités séparément selon le choix du candidat(e).

Le sujet comporte quatre exercices : un exercice de chimie et trois exercices de physique.

Exercice 1 : Chimie (7 points)

- Dosage d'une solution acide
- Suivi cinétique d'une transformation chimique

Exercice 2 : Transformations nucléaires (2,5 points)

- Désintégration d'un radioélément

Exercice 3 : Électricité (5 points)

- Charge d'un condensateur et sa décharge dans un dipôle RL
- Sélection et démodulation d'une onde modulée en amplitude

Exercice 4 : Mécanique (5,5 points)

- Mouvement d'un satellite artificiel
- Mouvement d'un oscillateur

EXERCICE 1 : Chimie (7 points)

Les deux parties sont indépendantes

Dans cet exercice on se propose d'étudier :

- le dosage d'une solution acide;
- le suivi cinétique d'une réaction d'estérification.

Partie 1: Dosage d'une solution aqueuse d'hydrogénosulfite de sodium

L'hydrogénosulfite de sodium $NaHSO_3$ est utilisé pour le blanchiment de la pâte à papier. L'étiquette d'un flacon contenant une solution commerciale (S_0) d'hydrogénosulfite de sodium $Na_{(aq)}^+ + HSO_{3(aq)}^-$ porte l'indication : $500\,g.L^{-1}$. La concentration molaire de (S_0) est C_0 .

Données : - Toutes les mesures sont effectuées à 25°C ;

- Le produit ionique de l'eau : $K_e = 10^{-14}$;
- Masse molaire de l'hydrogénosulfite de sodium : M(NaHSO₃)=104 g.mol⁻¹ ;
- Le couple acide/base : $HSO_{3(aq)}^{-}/SO_{3(aq)}^{2-}$;
- $pK_A (HSO_{3(aq)}^-/SO_{3(aq)}^{2-})=7,2$.

Cette partie de l'exercice vise à vérifier par dosage acido-basique l'indication 500 g.L⁻¹ inscrite sur l'étiquette de la solution commerciale.

Pour vérifier cette indication, on procède comme suit :

- On dilue 100 fois la solution (S_0) de concentration molaire C_0 et on obtient ainsi une solution (S_A) de concentration molaire C_A ;
- On prélève un volume V_A = 20,0 mL de (S_A) que l'on dose avec une solution aqueuse (S_B) d'hydroxyde de sodium $Na_{(aq)}^+ + HO_{(aq)}^-$ de concentration molaire C_B = 0,10 mol. L^{-1} .

Le volume de la solution $(S_{\scriptscriptstyle B})$ versé à l'équivalence est $V_{\scriptscriptstyle BE}$ =9,6 mL .

- 1-1- Écrire l'équation chimique modélisant la réaction de dosage. (0,5pt)
- 1-2- Déterminer la valeur de C_A . (0,75pt)
- **1-3-** Déduire que $C_0 = 4,80 \text{ mol.L}^{-1}$. **(0,25pt)**
- 1-4- Justifier si l'indication inscrite sur l'étiquette du flacon est vérifiée. (0,75pt)
- 1-5- Déterminer la valeur de la constante d'équilibre K associée à l'équation de la réaction de dosage. (0,75pt)
- **1-6-** En se basant sur le tableau d'avancement de la réaction de dosage à l'équivalence, trouver la concentration molaire C_{eq} de la solution de sulfite de sodium $2Na_{(aq)}^+ + SO_{3(aq)}^{2-}$ obtenue à l'équivalence. **(0,75pt)**

Partie 2: Suivi cinétique d'une réaction d'estérification

On étudie la cinétique de la réaction entre l'acide éthanoïque CH₃COOH et le propan-1-ol C₂H₅CH₂OH. On réalise cette estérification dans différentes conditions expérimentales :

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية (خيار فرنسية)

 ∇

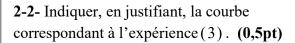
Expérience (1):

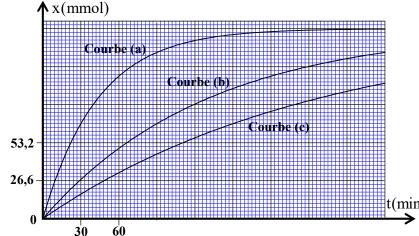
On mélange 0,200 mol d'acide éthanoïque avec 0,200 mol du propan-1-ol à la température θ_1 .

Expérience (2):

On mélange 0,200 mol d'acide éthanoïque avec 0,200 mol du propan-1-ol à la température θ_2 avec $\theta_2 > \theta_1$.

Expérience (3):


On mélange $0,200\,\mathrm{mol}$ d'acide éthanoïque avec $0,200\,\mathrm{mol}$ du propan-1-ol à la température θ_2 avec ajout de quelques gouttes d'acide sulfurique concentré.


Les courbes de la figure ci-contre représentent l'évolution temporelle de l'avancement x de la réaction

qui se produit pour chaque condition expérimentale.

2-1- Écrire, en utilisant les formules semi-développées, l'équation modélisant la réaction d'estérification qui se produit. Donner le nom de l'ester (E) formé.

(0,75 pt)

- 2-3- Répondre, en justifiant, par vrai ou 30 60 faux à l'affirmation suivante: "La valeur de l'avancement final x_f de la réaction sera la même pour les trois conditions expérimentales". (0,75pt)
- **2-4-** Déterminer graphiquement $t_{1/2}$ le temps de demi-réaction correspondant à l'expérience (2). (0,75 pt)
- 2-5- Calculer le rendement de la réaction pour le cas de l'expérience (3). (0,5pt)

EXERCICE 2 : Désintégration du cadmium 107 (2,5 points)

On se propose dans cet exercice d'étudier la désintégration du cadmium 107.

Le cadmium radioactif $^{107}_{48}$ Cd , donne, en se désintégrant, le noyau d'argent $^{107}_{47}$ Ag et une particule $^{A}_{Z}$ e avec émission d'un rayonnement γ (gamma).

Données: - Masses: $m({}^{107}_{48}\text{Cd}) = 106,88045 \text{ u}$; $m({}^{107}_{47}\text{Ag}) = 106,87947 \text{ u}$; $m({}^{\text{A}}_{\text{Z}}\text{e}) = 5,486.10^{-4} \text{ u}$;

- Demi-vie du $^{107}_{48}$ Cd : $t_{1/2}$ = 6,93 heures ;
- $-1u=931,49 \text{ MeV.c}^{-2}$.
- 1- Choisir parmi les affirmations suivantes l'affirmation juste : (0,5 pt)
 - A Dans le noyau $^{107}_{48}$ Cd il y a 59 protons.
 - B La désintégration d'un échantillon radioactif est d'autant plus rapide que sa constante radioactive λ est plus petite.
 - C Dans le diagramme (N, Z) de Segré, les isotopes sont sur une ligne perpendiculaire à l'axe des Z.
 - D La cohésion du noyau est d'autant plus forte que son énergie de liaison par nucléon est petite.
- 2- Écrire l'équation de désintégration d'un noyau de cadmium ¹⁰⁷₄₈Cd en précisant le type de cette désintégration. (0,5 pt) https://ph-chmzrh.e-monsite.com/

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية (خيار فرنسية)

3- Un laboratoire reçoit à la date t=0 un échantillon de $^{107}_{48}$ Cd d'activité $a_0=1,25.10^{12}$ Bq.

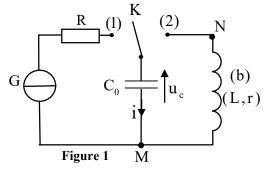
A l'instant $t_1 = 2t_{1/2}$ l'activité de cet échantillon est a_1 et à l'instant $t_2 = 3t_{1/2}$ son activité est a_2 .

3-1- Établir l'expression
$$a_2 = \frac{a_1}{2}$$
. **(0,5 pt)**

3-2- Montrer que l'expression de N_d le nombre de noyaux désintégrés entre les instants t_1 et t_2 est :

$$N_d = \frac{a_0 t_{1/2}}{8 \ln 2}$$
. (0,5 pt)

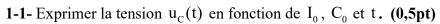
3-3- Déterminer, en unité MeV, la valeur de l'énergie libérée E lors de la désintégration de cet échantillon entre les instants t_1 et t_2 . (0,5 pt)

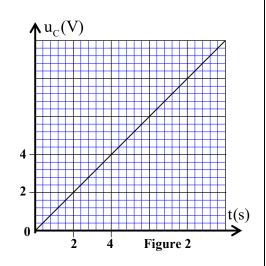

EXERCICE 3 : Electricité(5 points)

Les composantes électroniques telle que les diodes, les bobines, les condensateurs se trouvent dans différents circuits électriques et électroniques de plusieurs appareils électriques qui sont utilisés dans le domaine industriel, de communication, de numérisation...

On se propose dans cet exercice d'étudier :

- la charge d'un condensateur et sa décharge dans un dipôle RL;
- la sélection et la démodulation d'une onde modulée en amplitude.


Le montage électrique représenté par le schéma de la figure 1 comporte un circuit de charge d'un condensateur et un autre de sa décharge.


1- Charge d'un condensateur par une source de courant

On veut déterminer la capacité C_0 d'un condensateur, initialement déchargé, en utilisant le montage présenté sur la figure 1. Le générateur de courant G débite un courant électrique d'intensité constante $I_0 = 1 \mu A$.

A un instant choisi comme origine des dates $(t_0=0)$, on met l'interrupteur K en position (1). Un système d'acquisition informatisé adéquat permet d'obtenir la courbe d'évolution temporelle de la tension $u_C(t)$ aux bornes du condensateur lors de sa charge (figure 2).

1-2- Vérifier que
$$C_0 = 1 \mu F$$
. **(0,5pt)**

2- Décharge d'un condensateur dans un dipôle RL

Lorsque la tension entre les bornes du condensateur prend la valeur $u_C = U_0 = 10 \, \mathrm{V}$, on bascule l'interrupteur K en position (2) à un instant pris comme nouvelle origine des dates $(t_0 = 0)$. Un système d'acquisition informatisé adéquat permet d'obtenir la courbe représentant la tension $u_C(t)$ (figure 3).

2-1- Établir l'équation différentielle vérifiée par $u_c(t)$. (0,5pt)

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2025 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية (خيار فرنسية)

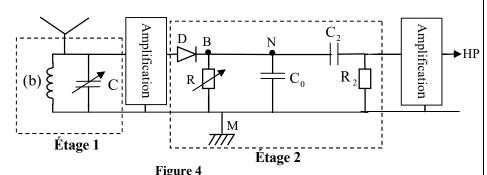

- 2-2- En exploitant la courbe de la figure 3, déterminer :
- 2-2-1- la valeur de la pseudopériode des oscillations. (0,5pt)
- 2-2-2- le signe de l'intensité du courant i

entre l'instant t_A et l'instant t_B . (0,5pt)

2-3- Montrer que :
$$\frac{dE_T}{dt} = -r.i^2$$
,

avec E_T l'énergie totale du circuit à un instant t . (0,5pt)

2-4- Calculer $|E_{th}|$ l'énergie dissipée par effet joule dans le circuit entre les instant t=0 et $t=t_A$. **(0,5pt)**


Figure 3

3- Sélection et démodulation d'une onde modulée en amplitude

On utilise une chaine électronique simplifiée représentée sur la figure 4 pour sélectionner et démoduler

une onde électromagnétique modulée en amplitude.

Dans cette chaine on utilise une diode D considérée idéale, la bobine (b) (supposée aussi idéale) et le condensateur de capacité \mathbf{C}_0 précédemment utilisé.

3-1- Quel est le rôle de l'étage 2 ? **(0,25pt)**

- **3-2-** Trouver la valeur C_1 à laquelle il faut ajuster la capacité C pour capter le signal modulé de fréquence f_p =162 kHz sachant que L=2 mH (on prend π^2 =10). **(0,75pt)**
- 3-3- La fréquence du signal modulant est $f_s = 5 \text{kHz}$. Si on ajuste R à la valeur $R_0 = 1,5 \text{k}\Omega$, aura-t-on une démodulation de bonne qualité ? Justifier. (0,5pt)

EXERCICE 4 : Mécanique (5,5 points)

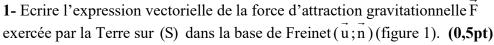
Les parties 1 et 2 sont indépendantes

Partie1: Mouvement d'un satellite artificiel

On se propose d'étudier dans cette partie le mouvement d'un satellite artificiel autour de la Terre. Un satellite (S) de centre d'inertie G_S et de masse m_S est destiné à l'observation des océans.

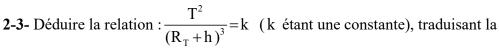
Dans le référentiel géocentrique considéré galiléen, (S) décrit une orbite circulaire autour de la Terre avec une période de révolution T . (S) se trouve à une altitude h de la surface de la Terre (figure 1). (On note que dans la figure 1 l'échelle n'est pas respectée).

On considère que la Terre est sphérique, de centre O, de rayon $R_{\scriptscriptstyle T}$, de masse $m_{\scriptscriptstyle T}$ et ayant une symétrie sphérique de répartition de masse et que (S) n'est soumis qu'à la force gravitationnelle exercée par la Terre.

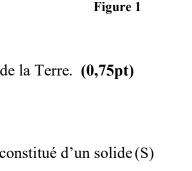


La Terre

شعبة العلوم التجريبية مسلك العلوم الفيزيانية (خيار فرنسية)


Données: - Constante de gravitation universelle : G = 6,67.10⁻¹¹ kg⁻¹.m³.s⁻²;

- Rayon de la Terre : $R_T = 6380 \text{ km}$;
- Période de révolution : T=1h 52 min ;
- L'altitude : h=1336 km.


- 2- En appliquant la deuxième loi de Newton :
- **2-1-** Montrer que le mouvement circulaire du centre d'inertie G_s autour de la Terre est uniforme. **(0,5pt)**
- **2-2-** Déterminer v_S la norme de la vitesse de G_S en fonction de

$$G, m_T, R_T \text{ et h} \cdot (0.75 \text{ pt})$$

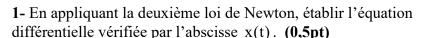
troisième loi de Kepler relative au mouvement du centre d'inertie G_s autour de la Terre. (0,75pt)

3- Calculer alors la valeur de la masse m_T . (0,5pt)

Le satellite (S)

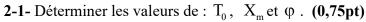
Partie 2: Mouvement d'un oscillateur

L'oscillateur mécanique étudié est modélisé par le système (solide-ressort) constitué d'un solide (S) de masse m=250 g et d'un ressort à spires non jointives, de masse négligeable et de raideur K.


Le ressort est horizontal, une de ses extrémités est fixe et sur l'autre on accroche le solide (S). Ce solide peut glisser sans frottement sur le plan horizontal.

On étudie le mouvement du centre d'inertie G du solide (S) dans un repère $R(\vec{O},\vec{i})$ lié à un référentiel terrestre considéré galiléen.

On repère la position de G à un instant t par l'abscisse x sur l'axe (O,\vec{i}) . A l'équilibre, l'abscisse de G est nul (figure 2).


On écarte (S) de sa position d'équilibre dans le sens positif d'une distance X_m et on le lâche sans vitesse initiale à un instant choisi comme origine des dates (t=0).

L'exploitation d'un enregistrement vidéo du mouvement de G à l'aide d'un logiciel adéquat, a permis d'obtenir la courbe de la figure 3 représentant l'évolution temporelle de la vitesse $v_x(t)$ de G.

2- La solution de cette équation différentielle s'écrit

$$x(t) = X_m \cos\left(\frac{2\pi}{T_0}t + \varphi\right)$$
 avec T_0 la période propre de l'oscillateur.

2-2- Déduire la valeur de la raideur K (On prend $\pi^2 = 10$). (0,5pt)

3- Déterminer la variation de l'énergie potentielle élastique du système (solide (S) - ressort) entre les instants t=1s et t=2,5s. (0,75pt)

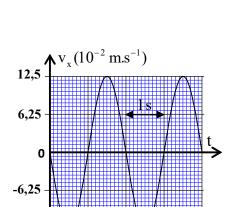


Figure 2

Figure 3